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J. Phys. A: Math. Gen. 14 (1981) 283-285. Printed in Great Britain 

COMMENT 

Comment on Parisi's equation for the SK model for spin 
glasses 

B Duplantier 
DPhT, CEN Saclay, BP No 2, 91190 Cif-sur-Yvette, France 

Received 22 July 1980 

Abstract. A simple algebraic derivation of Parisi's equations for spin glasses is given 

Parisi (1980) has recently proposed a solution for the Sherrington-Kirkpatrick model of 
spin glasses, which involves a function q ( x ) ,  x E [0, 11, as a local order parameter. The 
free-energy density is then given by the nonlinear differential equation 

where h is the external magnetic field. f ( x ,  h )  is a generalised free energy such that 
f(1, h )  = ln(2 cosh h )  . f ( 0 ,  h )  gives the actual free energy. 

Starting from Parisi's form for the continuous breaking of the replica symmetry, one 
can give by a source field method a simple algebraic derivation of (1). 

The quantity of interest is 

1 
F =  -1im - l n G ,  

I Z - o  n 

Q a b  is a n x n matrix. Then Parisi considers the following parametrisation for Q: 

Q =  (4) 

where the mi(i = 1, K )  are the successive sizes of the diagonal blocks, with 1 < ml < 
. . . G mK -s mKil = n . q(x) is defined by q(mi) = qi. 
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Introducing a source ha, we write G as 

For the trivial case Qab = q, 

G =  exp-q 1 1 --)(n2coshha)1 a a  
( 2 a,b aha ahb a h,=h 

= (exp j q ah2 (2 cosh h)" 
a 2 )  

where we have used repeatedly the trivial identity Ea a f (h l ,  . . . , hn)/ahalh,=h = 
af(h, . . . , h)/ah.  Equation (6) is the key to the calculation of G. The generic matrix Q 
can indeed be considered as the limit of the series 

where the Gi are defined by 

4i = qi -qI+i = q(mi) -q(mi+l) (8) 

and characterise the superposed sheets of the diagonal blocks. mm =Im is the constant 
m x m matrix equal to 1 everywhere. Then (7) reads symbolically 

Now g(mi, h )  is defined as the restricted G(5) calculated for the i-th term of the 
series (7). (9) (6) give immediately the recursion: 

g(ml,  h )  = (exp 441(a2/ah2))(2 cosh h)"', 

g(m2, h )  = (exp t4z(a2/ah2))[g(ml, h)l""". . a ,  

G = [exp &(n)(a2/ah2)][g(mK, h)]"/"". 

In the continuous limit n + 0, mi = x E [0, 11, mI+l /mi  = (x + dx)/x, and the recur- 
sion relation becomes 

with g ( 1 ,  h )  = 2 cosh h. Equation (10) is equivalent to 

dg 1 dq d2g 1 -+- g In g. _ -  - 
ax 2 dx ah2 x 
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Using (2) and (9), we find for n + 0 

Then, because of (lo), the function f ( x ,  h )  = ( l / x )  In g(x,  h )  verifies equation (l), QED. 
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